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Turbulent transport through wall subchannels of circular and hexagonal rod clusters has 
been studied using a two-dimensional eddy diffusivity. Fully developed flow and thermal 
conditions are assumed, and finite-difference solutions have been generated for the uniform 
heat flux condition on the rod surface. Transport rate values are estimated for subchannels 
with curved as well as straight boundaries with the pitch-to-diameter and wall-to- 
diameter ratios varying over a wide range. The cluster-average transport coefficients are 
next generated for circular bundles by suitably combining the results for constituent 
subchannels. Quantitative agreement with experimental results in the literature are attained. 
The accuracy of turbulence modeling is attested to by the fact that the cluster-average 
friction factor and Nusselt number values are in reasonable agreement with the well- 
established internal flow correlations based on hydraulic diameter. 
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I n t r o d u c t i o n  

Thermal hydraulic studies relating to the safety of a nuclear 
reactor have assumed considerable significance in recent years 
in the wake of the Three Mile Island (TMI)-2 and the Chernobyl 
accidents. In the event of a loss-of-coolant accident, the 
degeneration in coolant flow rate through the calandria results 
in reduced heat transfer and consequent overheating of the rod 
surface that leads to oxidation of the cladding and possibly to 
a meltdown of the core. The postulated sequence of events 
points to the need of a knowledge of transport rate values for 
individual rods under laminar and low turbulent flow conditions. 
In evaluating the single-rod related values, the calandria 
geometry is modeled in either of two methods: triangular or 
square subchannels, and symmetry sectors. The latter approach 
is pertinent to small reactors, such as those of the CANDU 
design. A symmetry sector is multiply connected, and turbulence 
modeling for the complex geometry is formidable. In an earlier 
work, the present authors proposed a method of superposition 
wherein results of constituent subchannels (see Figure 1) could 
be suitably combined to generate the cluster average transport 
rate values in the laminar regime. The exercise corroborated 
the propositions of Rehme. 2 The superposition method could, 
logically be attempted for turbulence modeling in a finite 
bundle. 

The symmetry sector can be discretized into a number of 
interior and wall subchannels. The results for turbulent flow 
through interior subchannels were reported by Mohanty and 
Sahoo. 3 The present article is aimed at the evaluation of 
transport rate values for the wall subchannels, as a complement 
to the earlier work, 3 

Rods near a bounding wall, i.e., in a wall subchannel, have 
been shown to be overheated for the wall-to-diameter ratio in 
the neighborhood of 1.4 as compared to their counterparts in 
the interior, even under no power-skew condition. 4 Buoyancy 
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and back-flow effects become prominent near a bounding wail. 
The wall subchannels have attracted both analytical and experi- 
mental investigations by Rehme, 5'6 Scale, 7-9 and Slagter, 1° 
among others. Studies by Seale and Slagter included effects of 
secondary flow and anisotropic eddy viscosity. 

Algebraic mixing length as well as higher-order closure 
models have been used to model turbulence in rod-bundle 
geometries. Buleev's mixing length was used by Ramm and 
Johannsen 1~ and Slagter, z° whereas Prandtl 's mixing length 
was adopted by Meyder 12 and Thompson and Ho ly )  3 Devi- 
ations of computed results from experiments were generally 
attributed to anisotropic eddy diffusivities. 

A one-equation (k- l )  model was adopted by Carajilescov 
and Todreas 14 and Trupp and Aly)  5 Batzis and Todreas t6 
also applied a k-e model. These closure models were generally 
oriented towards assessing the effects of secondary flow. Batzis 
and Todreas 16 found it to be less than 1% of the axial flow. 
Scale s remarked that secondary flow, even in conjunction with 
large anisotropic diffusivity, has only a marginal effect on heat 
transfer. The anisotropy factor is defined as $ = ~,,0/~,,,, where 
0 and r are the angular and radial directions. ~m0 is experi- 
mentally estimated by dividing the measured peripheral Reynolds 
stress by the velocity gradient in the 0-direction. It is a common 
experience that, even in low PDR arrangements, the peripheral 
velocity gradients are orders of magnitude lower than the radial 
gradient, leaving a scope for inaccuracy in experimental esti- 
mation. As a result, a common practice in the literature has 
been to examine the effects of anisotropy through parametric 
variation of $ (see Trupp and Aly15). Bartzis and Todreas 16 
expressed ~ as a ratio of length scales, and Rehme 17 observed 
it to be a point function that varied radially in a wall subchannel. 

A general observation is that variations of ~, do not sub- 
stantially change the transport rate values but do flatten the 
wall shear stress and temperature distributions (see Thompson 
and Holy 13 and Rapley I s). This observation was corroborated 
by the present authors in a study of the interior subchannels 3 
through an anisotropic k-1 formulation. 

The thrust of the thermal-hydraulic studies pertains to reactor 
safety considerations. Since it is observed that anisotropy or 
secondary flow reduces the rod surface temperature variation, 
uncertainties in their values or model can inadvertently lead to 
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The 2-D model is here applied to wall subehannels of circular 
and hexagonal shells. The accuracy of the results so derived is 
established through a process of integration: (1) the wall 
subehannel average transport rate values are combined with 
those for the interior subchannels of ref. 3, following the 
procedure enumerated in ref. 1; and (2) the bundle average 
values so constructed are compared with experimental results 
in the literature. Agreement of the friction factor in a circular 
bundle to better than 10% lends confidence to this study. 

Figure I Nineteen-rod circular cluster showing the various sub- 
channels 

underprediction of the hot-spot temperature, signaling lack of 
prudence regarding safety considerations. 

Given the above background, we proposed a two-dimensional 
(2-D) eddy diffusivity, 3 without the inclusion of secondary flow 
or anisotropy, for subchannel analysis. 

Analysis 
Physical mode l  

The rod-bundle geometry in a circular shell is divided into 
subehannel types I, II, and III as shown in Figure 1. Type III 
is the geometry of present interest. An enlarged view is presented 
in Figure 2. While AOE is a sector of the fuel rod, CD is a 
portion of the shell surface. The included angle 0o is given by 
00=n(0.5+l /N),  where N is the number of rods in the 
outermost row of the cluster. For a straight-boundary wall 
subchannel, type IV, which belongs to a square or a hexagonal 
cluster, 00 is always 90 °. The domain of computation is bounded 
by symmetry lines AB, BC, and DE, across which the normal 
gradient of a parameter is taken as zero. The velocity is zero 
on the solid surfaces AE and CD. Thermal solutions are 
obtained for a uniform heat flux condition on the rod surface, 
and the shell wall CD is treated adiabatic. 

The 2-D diffusivity, 3 conceived in the model of Reichardt's 
eddy viscosity, requires an a priori identification of the line of 
zero shear stress, on which the velocity may also be considered 

Notation 

A 
Cp 
D 
Dh 
f 
G= 
h 
k 
kl 
kt 
l 
MVL 
Nu 
P 
P/D 
Ph 
dp 
dz 
Pr 
P~ 
q 
R 
r 
~(0) 
Re 
Ret 
St 
S 

Flow area, A*= A/R 2 
Fluid specific heat at constant pressure 
Rod diameter 
Hydraulic diameter, D~' = Dh/R 
Fanning's friction factor 
Source term for momentum equation 
Heat transfer coefficient 
Mixing length coefficient 
Molecular thermal conductivity 
Turbulent thermal conductivity 
Length scale of turbulence 
Maximum velocity line 
Nusselt number, Nu = hDh/k~ 
Pitch, distance between two adjacent rod centers 
Pitch-to-diameter ratio 
Heated perimeter, Ph = P*/R 

Axial pressure gradient 

Prandtl number 
Turbulent Prandtl number, Pr, = em/eh 
Heat flux on rod surface 
Rod radius 
Radial distance, r*= r/R 
Radial distance of the MVL from the rod center 
Reynolds number 
Turbulent Reynolds number, Re~ = f~+R/v 
Stanton number, St=q/[pCpfi(Tw-Tb) ] 
Distance measured along the shell wall from point 
C of a straight boundary wall subchannel 

T Temperature, T* = T/Tra 
Tw Temperature on rod surface 
T~ Bulk temperature of fluid 
Tref Reference temperature, Tre f = qR/kl 
u Axial velocity, u* = u/f~ + 
u + Friction velocity, u + = ~ f ~  
y Radial distance measured from solid surface, y* = y/R 
p(0) Maximum value of y at the MVL 
y + Nondimensional distance from the wall, y + = yu +/v 

Greek symbols 
C¢ 

Em 

8h 
P 
# 
V 

~'w 
0 
Oo 

Thermal diffusivity 
Eddy diffusivity of momentum, e=, = (1 + emir) 
Eddy diffusivity of heat,/~eh ~--- (Prt/Pr + e=/v) 
Density 
Dynamic viscosity 
Kinematic viscosity 
Wall shear stress 
Angular coordinate 
Total included angle of a subehannel 

Superscripts 
- Average 
* Nondimensional 

Subscripts 
c Cluster-average values 
i Inner 
o Outer 
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? 

Figure 2 Sample mesh and boundary condit ions of a typical wal l  
subchannal, Type III 

( CENTRE OF THE CLUSTER I SHELL) 

Figure 3 D e t e r m i n a t i o n  o f  e q u i d i s t a n t  l i n e  

to have attained its locally maximum values (MVL). In Figure 3, 
the dotted curve is postulated to represent the MVL. This curve 
has been drawn, guided by the experience of the laminar flow 
in ref. 1, as equidistant from the shell surface CD and the rod 
surface EA. From a point V on the MVL, VS=VH,  the two 
being respective normals to the solid surfaces. 

The domain of computation is divided into three zones (see 
Figure 3). Zone I, ABLT, is similar to a triangular subchannel. 
Zone II spreads between the rod surface and the MVL. Zone 
III constitutes the region beyond the MVL up to the shell 
surface. In zone III the computation is carried out along 
VH'- -an  extension of the radial line OSV. The perpendicular 
distance of a point Q from the shell surface is QX, measured 
along a radius GX. 

Governing equations 

For a fully developed, constant property flow of an incompress- 
ible fluid, the axial momentum and energy equations are written 
a s  

V ' [ ( I + ~ ) V u ] = ~  dpdzz 

V . [ (  I + ~ ) V T I _ U _  • aT _ az 

(i) 

(2) 

The pressure gradient and the subchannel average shear stress, 
wetted over the rod and shell surfaces taken together, are related 
a s  

dp 4~,,, 4pf~ + 2 
- - (3) 

dz D h Dh 

Nondimensionalizing the velocity through fi+ and radial distance 
through R, the momentum equation is written as below. 

1 dp R 2 
Vl-~©mVI4 +l . . . .  (4) 

I~ dz f~ + 

Further, we can write the right-hand side of Equation 4 as 

1 dp R 2 4Ret 
G, - - (5) 

# dz fi + D* 

in terms of a turbulent Reynolds number Ret. For a fully 
developed thermal condition 

dT dT b qph 
- - (6) 

t?z dz pCp~A 

Substitution of Equation 6 into Equation 2 together with the 
definition of eddy diffusivity of heat 8h = kJpcp and the turbulent 
Prandtl number Pr, = em/s h leads to 

u* PrtP~' 
V" (eehVT*) = - -  (7) 

fi*PrA* 

where the temperature is normalized a s  T*=T/Tree with 
Tr=f=qR/kl. Solution of Equations 4 and 7 subject to the 
boundary conditions indicated on Figure 2 yields the velocity 
and temperature fields. 

Two- dimensional diffusivity 

The Richardt's eddy diffusivity for zones I and II is written in 
the manner for a triangular subchannel (see Mohanty and 
Sahoo 3) 

l 
v 6 L \e(O)-R/ d 

\ ~ ( 0 ) -  R /  J 

In zone III, for a point Q, XZ = p and XQ = y, the perpendicular 
distances measured along the radius drawn from the shell-center 
G. In terms of y and ~, the eddy diffusivity is written for zone 
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III as 

\ ~--~0)~] J (9) 

the average value of ~'t in Equation 8 was taken as 0.5 based 
on an exercise for the inner region of an annulus (see ref. 19). 
k-for zone III was maintained as 0.4. 

Method of solution 

Equations 4 and 7 were solved by finite-difference methods for 
different input values of Re, and appropriate values of Pr, and 
Pr for various subchannel dimensions. A central difference 
scheme based on the method of Taylor's series was adopted. 
A sample grid is shown in Figure 2 for a curved-boundary wall 
subchannel. The distance AB was divided according to a 
geometric progression so as to have closer grid points near the 
rod surface. The mesh was also nonuniform in the 0-direction 
with the objective being to locate the peripheral nodes on 
the boundary of the computational domain. The turbulence 
equations were solved from the second string of nodes, counted 
from the rod and shell wall. These nodes were made to lie 
beyond the laminar sublayer, i.e., y+ >30. The wall function 
used for velocity near a solid surface is given by the law of the 
wall: 

,,o, 

The constants k and C were such that u/u + = 14.84 at y+ =42 
using the suggestions of Levy 2° for an annulus. At the end of 
each cycle of iteration, the local values of zw were updated using 
the improved values of u 3 from the third row. The distribution 
of s,, was obtained by Equations 8 and 9. 

The temperature on the rod surface, subjected to a uniform 
heat flux condition, was estimated using the Stanton number 
relationship of Jayatilake: 21 

U +/U 
s t =  (11) 

Pr, P r +  

where Pr, the resistance to the laminar sublayer, is given by 

[ - /Pr \° '7s  1] 
e,=9.24Lt ) - 

x [1 +0.29 exp (-0.007 Pr/Pr,) (12) 

In order to choose an appropriate value or function for the 
turbulence Prandtl number, several sets of calculations were 
made for annuli of different radius ratio and interior subehanneis 
in ref. 3. It was found that the Wassel and Catton 22 expression 
for Prt is more generally applicable. The expression of ref. 22 
has been chosen for the wall subchannels: 

Ca [1 - e x p  { -  cd@.Iv)}] 
P r , -  (13) 

C,Pr [ 1 - exp { - C2/Pr(e,,Iv)}] 

The values of the constants C,, C2, C3, and C, are, respectively, 
0.21, 5.25, 0.20, and 5.0. 

The difference equations were solved iteratively with a 
relaxation factor varying between 1.3 and 1.5. Velocity and 
temperature gradients on the orthogonally intersected boundary 
AB and DE were satisfied through a quadratic polynomial. A 
six-point interpolation scheme (Mohanty and Sahoo ~) was 
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applied to treat the conditions on the nonorthogonally inter- 
sected nodes on BC and CD (see Figure 2). 

Fanning's friction factor f follows from Equation 3 as 

2.0 
f = - -  (14) (a+) 2 

The Nusselt number based on the average temperature of the 
rod surface and of the bulk fluid is 

o* 
Nu = - -  (15) 

T w -  T* 

The velocity and temperature distribution in the flow field were 
utilized to evaluate the transport parameters following Equations 
14 and 15. 

Superposition 

The transport rates for a finite bundle are evaluated by suitably 
combining the results for the constituent subehannels. The 
combination or superposition is carried out because (1) the 
duster-average flow rate is equal to the sum of the subehannel 
flow rates; (2) the pressure gradient is uniform on all the 
constituent subehannels; and (3) the pressure gradient is 
balanced by the wall shear stress in a fully developed flow. 

The source term for momentum equation is given by Equation 
5. But since 

Re ,=R 5 and ~ w = ( - ~ )  D~ 
4 '  

the input parameter Re, varies from subchannel to subehannel 
as D h varies. The solution for a subchannel i (see Figure 1) is 
carried out by choosing the Re,, values as 

R %  - / Dh' ( 1 6 )  

Retref V, Dhra 

where the reference subchannel could be chosen from the 
constituents (see Figure 1). Equation 16, in effect, ensures 
imposition of the same value of the pressure gradient on all 
subchannels. Furthermore, for fully developed flow 

dp {w,Pw, {w2Pw2 z~Pw, 
- - - . . .  - ( 1 7 )  

dz A 1 A 2 A, 

and the definition of Fanning's friction factor 
- 2 zwiPwiDhi 

( fRe) , -  (18) 
2vmi 

leads to 

mx 1 dp rh 2 rh, 
(J'Re), A,D21 = - 2-~ d--z = (fRe) A~-~22 . . .  = (J'Re), A ~  2 

(19) 
The conservation of mass yields 

rh, = ~h, +~h2 +th3 + . . .  (20) 

Substituting the value of rh t from Equation 19 into Equation 
20, we obtain the following expression for the cluster-average 
values of fRe:  

(fRe)c i=, \ A o ] \ D s J  (fRe)t 

Note that the method of superposition is not restricted to 
laminar or turbulent flow, and is independent of dependence 
o f f  on Re. 
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The cluster-average Nu values were calculated by first 
determining the average bulk temperature: 

T* - (22) 
2(2, 

and heated wall temperature 

~*wc - E  Tw~Phi (23) 
Phi 

Then 

D*~ (24) Nu c - _ ,  • 
Tw,- Tb~ 

for the entire cluster. 

Results and discussion 

Maximum velocity l ine 

Recall that the location of the MVL was first assumed, 
heuristically, to be the locus of the point equidistant from both 
the solid surfaces. This assumption was checked after generating 
the results for the flow field. The disagreement, if any, was 
narrowed through iteration. Fortunately, however, the MVL 
obtained from the converged turbulent solution remained 
almost unchanged except near the point L, where it shifted 
marginally towards the shell surface (see Figure 4b). The 
velocity profile along the MVL (Figure 4a) is also compared 
with the laminar results. 1 As is expected, the turbulent profile 
is much more uniform than the laminar value. 

2'5 F T LAMI 
2,0 

0 '5  I 

0 ,M V L 
(o) Velocity variotion atong MVL 

TARBULENT 

LAMINAR ~ 

X EQUIDISTANT 
POINTS 

100 

0 A B 
(b)  M a x i m u m  V e l o c i t y  L ine  ( M  V L )  

Figure 4 Locus of maximum velociW for a wall subehannel, Type 
III, W/D=1.25, P/D=1.3: (a) velocity variation along MVI_; (b) 
maximum velocity line (MVL) 

21 J/.. . . . .  

,+ _ l - f  
ok-- / / \ '-.. 

L A S C O - - . - - -  PREDICTION BY J, 
SEC- FLOW 

. . . . .  EXPERIMENTS 

I I I O.Sq : . , , . 1 
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(o) ROD SURFACE 

Ix 0., 

PREDICTION ~ REHME 0,4 flUTE ) 
. . . . .  EXPERIMENTS J 

0.3 01.1 012 0:3 01.4 / 5  01.6 01,7 0!8 0.19 II . . . .  
S / R  ~ 

(b) SHELL SURFACE 

Figure 5 Comparison of wal l  shear stress distribution, wal l  sub- 
channel, Type IV, P/D= W/D=1.071: (a) rod surface; (b) shell 
surface 

Wall shear stress distr ibution 

The present results for a straight-boundary wall subehannel 
are compared with experiments and predictions by Rehme, s 
(Figure 5). There is qualitative agreement between the two 
predictions on the rod surface. The values for the shell surface 
deviate up to a maximum of 30% near S/R= 1.1, due possibly 
to the choice of anisotropy factor made by Rehme. Both the 
predictions corroborate the trend of the experimental results, 
but with quantitative deviation. The experimental results are 
observed to be more uniform for either surface. Comparison 
of wall shear stress is also made with Scale's predictions, with 
and without secondary flow (Figure 6a). The distribution on 
the shell surface is shown in Figure 6b for the same geometry. 
The wall shear stress distributions for a curved-boundary 
subchannel are presented in Figure 7. The positions of the 
maximum and minimum values are located on the shell surface 
at symmetry points C and D, respectively. 

Friction factor 

The presently calculated friction factor results were compared 
with one of the empirical relation developed by Scale s for 
straight-boundary subchannels: 

f = 0.0565/Re o .: 17 (25) 

(see Table 1). For  subehannel type III, the present values o f f  
are 2 to 3% smaller than the results of Equation 25, over a 
wide range of Reynolds number varying from 20,000 to 160,000. 
It is also noted that for almost all cases, the value of the friction 
factor lies between the two empirical results obtained by the 
correlations of Blasius and McAdams 26 for smooth pipes. In 
other words, the friction factor for curved-wall boundary 
subchannels can be determined with reasonable accuracy by 
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Figure 6 Comparison of wall shear stress distribution, wall sub- 
channel, Type IV, P/D=1.1, W/D=1.185: (a) rod surface; (b) shell 
surface 
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Figure 7 Wall shear stress distribution, wall subchannel, Type Ill, 
P/D=1.3, W/D=1.25, Re=145,000: (a) rod surface; (b) shell 
surface 

the pipe flow correlations, through appropriate use of the 
concept of hydraulic diameter. 

For the straight-boundary subehannels, striking agreements 
were observed between the presently calculated values o f f  and 
those obtained by Equation 25 for higher Dh/R ratios (Table 

1 b). But with the decrease of the DffR ratio, the present values 
tend to be lower by as much as 10%. Similar trends were 
marked when compared with the empirical results by McAdams 
and Blasius. 26 Such variation were also noted by Seale. s For a 
straight-boundary wall subchannel, Rehme 5 determined, by 
experiments, the friction factor to be f=0.00454 for P/D = 
W/D = 1.07 at Re = 87,300, whereas the present value is 0.00426. 
For a geometry in which P/D= W/D= 1.15 and Re= 123,000, 
Slagtcr 1° obtained f=  0.00438; the present value at Re = 122,800 
is 0.00427, and so the agreement is excellent. 

The variation of the friction factor with the Reynolds number 
is shown in Figure 8 for both the curved and straight-wall 
subchannels; P/D= 1.3 and W/D= 1.25. It may be noted that 
the friction factor for the straight-boundary subchannel is nearly 
2% higher than that for the curved wall subchannel. 

Temperature variation on rod surface 

Computations have been made for the uniform heat flux 
condition in axial and peripheral directions. Representative 
variation of temperature on the rod surface is plotted in Figure 9. 
As expected, the temperature starts from a higher value at 
0 = 0 °, decreases steadily in the rod-free zone, and then increases 
as the gap between the rod and the shell surface narrows down. 

0 ,02  

0,01~= - -  

l 0.01 
ooo9  

0 .000  

0 ,007  

0 .006  

0 . 0 0 5  

0 .004  

I ] I I r I 

CURVED ROUNDARYI TYPE-||| 

STRAIGHT BOUNDARY~ TYPE- IV  

½ 
I 

J 
0 .002  

2=104  3x lO / *  4 t10  & DxlO 4 7xlO/* i0 $ 1,5 xlO $ 2xlO $ 
Reynotds  Number  (Re) 

Figure 8 Variation of friction factor with Reynolds number in wall 
subchannels, P/D = 1.3, W/D = 1.25 

Table I Friction factor results for wall subchannels 

sl. P/D W/D 
No. ratio ratio ~ Re 

Friction factor 

Present Eq. 25 

Curved boundary (Type I I l) 
1. 1.3 1.25 120 159,800 .00411 
2. 1.3 1.25 105 106,100 .00450 
3. 1.3 1.25 105 67,580 .00493 
4. 1.3 1.25 105 30,390 .00589 
5. 1.2 1.15 120 24,370 .00609 
6. 1.2 1.15 105 21,420 .00629 
7. 1.2 1.15 100 20,520 .00641 

Straightboundary (Type IV) 
1. 1.3 1.25 90 80,000 .00483 
2. 1.3 1.25 90 135,000 .00435 
3. 1.2 1.25 90 65,390 .00500 
4. 1.2 1.25 90 122,000 .00440 
5, 1.07 1.07 90 86,200 .00426 
6. 1.15 1.15 90 122,800 .00427 

.00420 

.00459 

.00506 

.00599 

.00631 

.00649 

.00655 

.00488 

.00435 

.00509 

.00445 

.00480 

.00444 
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Figure 9 Temperature variation on the rod surface, wall sub- 
channel, Type III, P/D=1.3, W/D=1.5, 19-rod cluster 

Nussel t  number  

Typical results for the Nusselt number for both curved and 
straight boundary subchannels are presented in Table 2. The 
turbulent Prandtl number Prt was calculated using Equation 
13. In the absence of any literature information, comparison 
of Nu values was made with the Dittus-Boelter correlation, 

and the agreement is reasonable. This is contrary to the 
experience with the interior subchannels. 3 It signifies that the 
wall subchannels, due to the presence of two solid walls, behave 
more as an internal geometry than does an interior subchannel. 

Cluster-average transport values 

The method of superposition is applied to some circular clusters 
with varying number of rods and geometrical arrangements. 
The Fanning's friction factor obtained through Equation 21 is 
compared with the experimental results of Mohanty and Roy 2~ 
(see Table 3). The experimental results are on the average 10% 
higher than the present values, which may be due to the spacers 
and end plates used in the experimental setup. Comparison of 
cluster average values off  with the Blasius 26 correlation indicates 
that the superimposed values are nearly 5% higher. Based on 
the above observations, it is recommended that the cluster- 
average friction factor to be estimated as 

f=0.083/Re °'25 (26) 

where Re is estimated using the cluster-average hydraulic 
diameter. 

The average Nusselt number for circular clusters was deter- 
mined by Equation 24 (see Table 4). Comparison of Nu values 
with the Dittus-Boelter correlation shows quantitative agree- 
ment. 

Table  2 Representative temperature solutions for wall subchannels (Pr=O.7, Pr, by the WasseI-Catton model ==) 

Nu 
Sl. P/D W/D D,/R 
No. ratio ratio ratio Re Present D-B equation 

Curved boundary ( Type II/) 
1. 1.25 1.25 1.7078 120 35,050 67.781 86.207 
2. 1.25 1.25 1.61 9 105 31,770 68.447 79.694 
3. 1.25 1.25 1.5928 1 O0 30,730 68.315 77.583 
4. 1.3 1.25 1.6943 105 30,930 69.143 78.002 
5. 1.1 2 1.38 1.9626 120 64,090 136.289 139.701 
6. 1.2 1.1 5 1.2796 120 24,370 60.507 64.447 
7. 1.2 1.25 1.542 105 32,920 67.043 81.990 
8. 1.2 1.25 1.632 120 36,650 70.956 89.346 

Straight boundary (Type IV) 
1. 1.1 1.185 1.0807 90 89,860 192.333 183.068 
2. 1.2 1.25 1.4647 90 29,860 80.546 75.821 
3. 1.2 1.25 1.4647 90 65,390 147.141 141.956 
4. 1.2 1.25 1.4647 90 122,000 199.307 233.865 
5. 1.2 1.394 1.9616 90 48,560 115.516 111.889 

Table  3 Fanning's friction factor for circular clusters by superposition 

Friction factor 

SI. P/D W/D No. of Blasius 
No. ratio ratio rods Re Present Ref. 25 correlation 

1. 1.2 1.1 5 7 22,880 .00635 .00751 .00642 
2. 1.25 1.25 7 32,148 .00586 .00690 .00589 
3. 1.1 2 1.38 7 47,351 .00542 .00626 .00535 
4. 1.3 1.25 7 155,367 .00423 .00465 .00398 
5. 1.2 1.1 5 19 24,089 .00647 .00741 .00634 
6. 1.25 1.25 19 32,450 .00604 .00688 .00588 
7. 1.3 1.25 19 165,673 .00424 .00458 .00391 
8. 1.2 1.1 5 37 24,062 .00715 .00741 .00634 
9. 1.25 1.25 37 31,917 .00657 .00691 .00591 

10. 1.3 1.25 37 167,495 .00455 .00456 .00390 
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Table 4 Average Nusselt number for circular clusters by superposition (Pr=0.7, Pr t by the WasseI-Catton model ==) 

Nu 
SI. P/D W/D No. of D~/R 
No. ratio ratio rods ratio Re Present D-B equation 

1. 1.2 1.1 5 7 1.250 22,880 59.638 61.281 
2. 1.25 1.25 7 1.636 32,148 64.888 80.443 
3. 1.3 1.25 7 1.767 155,367 320.875 283.697 
4. 1.2 1.25 7 1.506 31,81 9 65.590 79.784 
5. 1.25 1.25 19 1.663 32,450 79.441 81.047 
6. 1.2 1.25 19 1.484 30,080 74.349 76.272 
7. 1.25 1.25 37 1.692 31,917 85.824 79.982 

C o n c l u s i o n s  

Turbulent flow and heat transfer through the wall subchannels 
of circular and hexagonal clusters have been studied numerically 
by a finite-difference solution. Turbulence has been modeled 
in two dimensions by a generalization of Reichardt's 2° eddy 
diffusivity for circular pipes and annuli. 

It is observed that the friction factor for a curved-boundary 
wall subchannel can be reasonably predicted by pipe flow 
correlations. The pipe correlations can also be applied to 
straight-boundary wall subchannels, but only at higher values 
of Dh. For smaller values of Dh, particularly when the shell wall 
is very close to the peripheral rod, the friction factor decreases 
from that of the pipe flow and is dependent on the geometry 
of the subchannel. The Nusselt number for either geometry can 
be predicted by the Dittus-Boelter correlation with reasonable 
accuracy. 

The transport rate values in a turbulent flow through a finite 
rod bundle was generated by superimposing the results for the 
constituent subchannels. The cluster-average values so deter- 
mined were found to be in good agreement with experimental 
results in the literature. This leads to a suggestion that the 
turbulence modeling for a complex geometry may be more 
conveniently done by considering constituent subchannels. 

Whereas the corroborations of transport rate values certify 
the turbulence model and the computation scheme, the signifi- 
cance of the study lies in the predicted shear stress and rod 
surface temperature variation. The latter information is pertinent 
for locating possible hot spots. 
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